Parkinson's Disease 3.0 Preclinical Landscape - DRAFT

Organization			
Name	Project Leader	Project Title	OniX Summary
UNIVERSITY OF MICHIGAN AT ANN ARBOR	WANG, WENJING	Design and characterization of Nanobodies to dementia-related α- synuclein strains in Parkinson's disease	Research question: Do different strains of alpha-synuclein (α-syn) contribute to the progression of Parkinson's disease (PD) to Parkinson's disease dementia (PDD)? Stage: In vitro (using cells) Methods: • Amplified α-syn from PD and PDD patient samples using PMCA (protein misfolding cyclic amplification). • Developed and characterized a new library of synthetic nanobodies that target α-syn preformed fibrils (PFF). • Tested the ability of these nanobodies to distinguish between PD and PDD strains of α-syn. Drug development: This study focuses on developing nanobodies as potential therapeutic tools, not traditional drugs. These nanobodies could target and potentially prevent the spread of α-syn PFF, thereby halting disease progression. Research question: Does Glia Maturation Factor (GMF) play a role in activating mast cells and neuroinflammation in Parkinson's disease (PD)? Stage: This research proposes a two-stage approach: 1. In vitro: Using human and mouse mast cells, the study will investigate if GMF is required for activation and proinflammatory mediator secretion. 2. In vivo: Using MPTP-induced mouse models of PD, the study will explore the impact of GMF on mast cell function and dopaminergic neuron degeneration.
			Methods:
HARRY S.		Glia maturation	Analyze the effect of GMF on mast cell activation and proinflammatory
TRUMAN		<u>factor dependent</u>	mediator secretion in human and mouse primary mast cells.
MEMORIAL VA	ZAHEER,	mast cell activation in	 Investigate the mechanisms of GMF-induced mast cell activation.
HOSPITAL	ASGAR	Parkinson's disease	Utilize MPTP-induced acute and chronic PD mouse models.

Parkinson's Disease 3.0 Preclinical Landscape - DRAFT

Organization				
Name	Project Leader	Project Title	OniX Summary	
			 Reconstitute mast cell deficient mice with bone marrow-derived mast cells from GMF-deficient or wild-type mice. Analyze MPTP-induced neuroinflammation, neurochemical deficits, and nigrostriatal degeneration in these models. Correlate behavioral parameters with the observed pathology. Drug development: This study focuses on understanding the role of GMF, not directly developing a drug. However, by investigating GMF's influence on neuroinflammation, the research aims to identify GMF as a potential target for future therapeutic 	
			development in PD.	
SOUTH TEXAS		Detoxification of	Research question: Does impaired aldehyde detoxification contribute to dopaminergic dysfunction in Parkinson's disease (PD)? Stage: In vivo (using animals) Methods: • Created two lines of mice: • Mice with mutations in Aldh1a1 and Aldh2 (important for aldehyde detoxification in dopamine neurons) • Wild-type control mice • Examined the effects of impaired aldehyde detoxification on: • Motor function • Dopamine levels and metabolites • Loss of midbrain dopamine neurons Drug development: This research investigates the potential role of aldehydes as a therapeutic target in PD. The study explores: • The link between impaired aldehyde detoxification and dopaminergic dysfunction.	
VETERANS HEALTH CARE	STRONG,	Biogeneic Aldehydes in Parkinson's	• The potential of "aldehyde trapping agents" for neuroprotection. These findings could lead to the development of new therapeutic strategies for	
SYSTEM	RANDY	<u>Disease</u>	PD.	

Parkins	on's [Disease 3.0 I	Preclinical	Landsc	ape - DRAFT
	_				

Organization					
Name	Project Leader	Project Title	OniX Summary		
			Research question:		
			Can genetically engineered probiotic bacteria producing L-DOPA provide		
			sustained symptomatic relief for Parkinson's disease (PD) without causing L-		
			DOPA-induced dyskinesia (LID)?		
			Stage:		
			In vivo (using animals)		
			Methods:		
			 Engineered a probiotic strain of E. coli Nissle 1917 (EcNrhaL-DOPA) to produce L-DOPA. 		
			 Compared the L-DOPA production efficiency of EcNrhaL-DOPA to older methods. 		
			 Evaluated gut colonization, pharmacokinetics, and adaptation profiles of EcNrhaL-DOPA in mice. 		
			 Tested the therapeutic efficacy of EcNrhaL-DOPA in mouse models of PD. 		
			 Investigated whether EcNrhaL-DOPA prevents LID in mouse models. Drug development: 		
			This research proposes a novel drug development approach using genetically		
			engineered probiotic bacteria to continuously produce L-DOPA in the gut. This		
	2		method aims to:		
			 Provide sustained and consistent L-DOPA delivery to the brain. 		
		Novel Re-engineered	Reduce L-DOPA fluctuations associated with traditional oral L-DOPA		
	KANTHASAMY,	L DOPA Probiotic	therapy.		
UNIVERSITY OF	ANUMANTHA	Therapy for	 Potentially alleviate motor symptoms of PD without causing LID. 		
GEORGIA	GOUNDER 🔘	Parkinson's Disease	This could lead to a new therapeutic strategy for PD management.		
			Research question:		
			Can PKC4, a specific protein kinase, be a target for developing neuroprotective		
			drugs for Parkinson's disease (PD)?		
		Development of	Stage:		
		<u>Novel</u>	This research is transitioning from the bench to early drug development (SBIR		
РК	ANANTHARA	<u>Neuroprotective</u>	Phase I).		
BIOSCIENCES	Μ,	Agents for	• Previous research identified PKC4 as a key protein involved in the death		
CORPORATION	VELLAREDDY	Parkinson?s Disease	of dopaminergic neurons in PD models.		

Parkinson's Disease 3.0 Preclinical Landscape - DRAFT

Organization					
Name	Project Leader	Project Title	OniX Summary		
			This project proposes developing new drugs to inhibit PKC4 activity.		
			Methods:		
			 Design and synthesize new molecules that inhibit PKC4. 		
			 Test the selectivity and potency of these new PKC4 inhibitors. 		
			 Evaluate the neuroprotective effects of these inhibitors in cell culture models of PD. 		
			Drug development:		
			This research aims to develop small molecule inhibitors of PKC4 as a new		
			therapeutic approach for PD. By inhibiting PKC4, the researchers hope to protect dopaminergic neurons and slow the progression of PD.		
			Public health relevance: This project focuses on finding a disease-modifying		
			treatment for PD, which would be a significant advancement in PD therapy.		
			Research question:		
			Can a mitochondrial enzyme defect in platelets be a biomarker for Parkinson's disease (PD)?		
			Stage:		
			In vitro (using human platelets)		
			Methods:		
			 Measure the activity of complex I, a mitochondrial enzyme, in platelets from: 		
			 Patients with typical PD 		
			 Patients with "parkinson-plus" disorders 		
	Co	nnecting	 First-degree relatives of PD patients Healthy controls 		
			Analyze platelet function in PD patients.		
			Drug development:		
			This research is not directly developing a drug. However, by investigating a		
			potential mitochondrial enzyme defect, it aims to:		
UNIVERSITY OF		<u>COMPLEX I IN</u>	• Establish complex I activity as a biomarker for PD diagnosis.		
COLORADO	BOYSON,	<u>PARKINSON'S</u>	 Identify potential therapeutic strategies for PD based on correcting the 		
DENVER	SALLY J	<u>DISEASE</u>	enzyme defect (e.g., replacing or stimulating the enzyme).		

Parkinson's Disease 3.0 Preclinical Landscape - DRAFT

Organization					
Name	Project Leader	Project Title	OniX Summary		
			This could lead to the development of a diagnostic test and novel therapeutic		
			approaches for PD.		
			Research question:		
			Can a smartphone-based telerehabilitation system (called Smarter Balance		
			System - SBS) improve long-term balance performance and reduce the fear of		
			falling in people with Parkinson's disease (PD) compared to a paper-based		
			exercise regimen?		
			Stage:		
			In vivo (with humans)		
			Methods:		
			Compare two groups:		
			 Participants with PD using SBS for in-home balance training 		
			 Participants with PD using a paper-based exercise regimen for in 		
			home training		
			Evaluate participants on:		
			 Long-term static and dynamic balance performance 		
			 Retention of balance improvements 		
			 Daily physical activity levels 		
			 Confidence in performing activities and fear of falling 		
			Drug development:		
			This study is not developing a drug. It is evaluating a smartphone-based		
			telerehabilitation system (SBS) as a potential therapeutic tool for improving		
	00	<u>Systematic</u>	balance and reducing fall risk in PD patients.		
	00	evaluations of a new	Expected benefits of SBS:		
		smartphone-based	Improved long-term balance performance		
		<u>wearable</u>	Increased confidence in daily activities		
		telerehabilitation	Reduced fear of falling		
		system for use by	Reduced need for in-home assistance with balance training		
UNIVERSITY OF	LEE, BEOM	people with	Improved monitoring and guidance by physical therapists through		
HOUSTON	CHAN	Parkinson's disease	remote data tracking		

Parkinson's Disease 3.0 Preclinical Landscape - DRAFT

Organization			
Name	Project Leader	Project Title	OniX Summary
			Research question:
			Does COX-2 play a role in worsening MPTP-induced neurotoxicity in a Parkinson's
			disease (PD) model by activating microglia and oxidative stress?
			Stage:
			In vivo (using animals)
			Methods:
			Use two groups of mice:
			 Mice deficient in COX-2 gene
			 Wild-type mice
			• Treat both groups with MPTP, a neurotoxin that mimics PD symptoms.
			 In the wild-type group, also administer COX-2 inhibitors before MPTP
			treatment.
			Analyze:
			 Dopamine neuron survival
			 Microglial activation
			 Striatal dopamine levels
			 Functional recovery in mice
			 Investigate the molecular mechanisms involved, including:
			 Protein modification
			 Reactive oxygen species generation
			 Inflammatory cytokine expression
			 Apoptosis-related gene expression
			 Signaling molecule activation
			Drug development:
			This research does not directly develop a drug, but investigates COX-2 as a
			potential therapeutic target for PD. By understanding how COX-2 contributes to
	DINC	Cox-2 deficient mice	MPTP neurotoxicity, researchers aim to develop:
UNIVERSITY OF	BING,	are resistant to MPTP	Novel therapeutic treatments for PD
KENTUCKY	GUOYING	<u>neurotoxicity</u>	Treatments for other neurodegenerative diseases
		Denemine mutant	Research question:
GEORGETOWN	FEDEROFF,	Dopamine, mutant	Does alpha-synuclein (SYN) overexpression, particularly mutant forms, trigger
UNIVERSITY	HOWARD J.	<u>synuclein, oxidative</u>	Parkinson's disease (PD) by activating microglia and causing oxidative stress?

Parl	kin	ison's [Disease 3.	0 F	Preclinical	Landsc	ape - DRAFT
	•						

Organization					
Name	Project Leader	Project Title	OniX Summary		
		stress and	Stage:		
		inflammation	In vivo (using animals)		
			Methods:		
			Use transgenic mice models:		
			 Wild-type SYN overexpression (wtSYN+/+) 		
			 Double-mutant SYN overexpression (dmSYN+/+) 		
			Analyze:		
			 Microglial activation 		
			 Presynaptic function 		
			 Proinflammatory response 		
			 Quinone-mediated oxidative stress 		
			 Use additional models to track quinone stress response. 		
			Drug development:		
			This research does not directly develop a drug. It investigates the role of alpha-		
			synuclein and microglia in the initiation of PD. By understanding how SYN		
			overexpression triggers microglial activation and oxidative stress, researchers		
			aim to identify potential therapeutic targets for PD, particularly focusing on early		
	/		disease stages.		
			Research question:		
			Does oxidative stress from environmental toxins damage a protein called UCH-		
			L1, contributing to Parkinson's disease (PD) by impairing protein degradation pathways in dopamine neurons?		
			Stage:		
	L Co	nnecting	Not directly mentioned, but likely a combination of in vitro (using cells) and in		
	~~~	incoung	vivo (using animal models) studies.		
			Methods:		
			Analyze brain tissue from PD patients to see if UCH-L1 is modified by		
		Role of UCH-L1	oxidation.		
		<u>Oxidative</u>	<ul> <li>Investigate how oxidative stress affects UCH-L1 function in cell models.</li> </ul>		
	MCKEON,	Modification in	• Examine how UCH-L1 modifications impact protein degradation pathways		
EMORY	JEANNE	Parkinson's Disease	and dopamine neuron health.		
UNIVERSITY	ELIZABETH	Pathogenesis	Drug development:		

3/28/24 Prepared by Martin Dueñas - CONFIDENTIAL

Parkinson's Disease 3.0 Preclinical Landscape - DRAFT

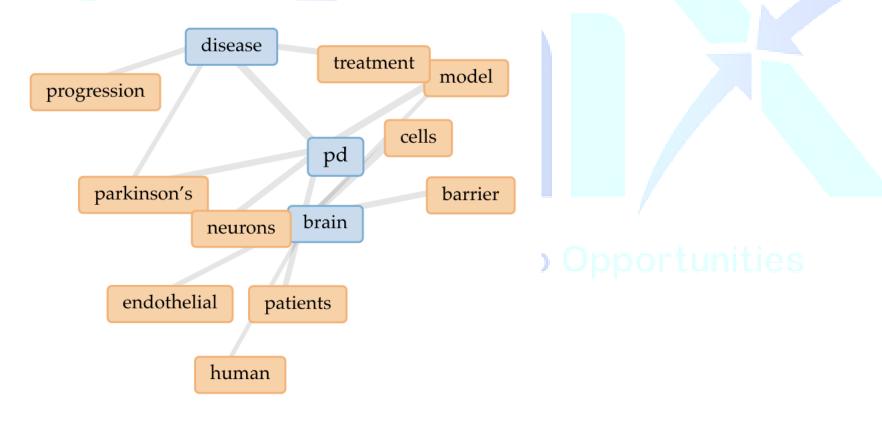
Organization					
Name	Project Leader	Project Title	OniX Summary		
			This research indirectly contributes to drug development by investigating a		
			potential mechanism of PD progression. By understanding how oxidative stress		
			damages UCH-L1 and disrupts protein degradation, researchers may:		
			<ul> <li>Identify UCH-L1 as a target for protective therapies against PD.</li> </ul>		
			<ul> <li>Develop treatments to prevent oxidative damage to UCH-L1 or restore its</li> </ul>		
			function.		
			Gain insights into potential environmental risk factors for PD.		
			Research question:		
			• How does alpha-synuclein ( $\alpha$ -syn) aggregation spread in the brain, and		
			can targeting the enzyme aldehyde dehydrogenase 1a1 (ALDH1a1) help		
			reduce α-synuclein burden and slow Parkinson's disease (PD) progression?		
			Stage:		
			In vivo (using animals) Methods:		
			Investigate the impact of:		
			$\circ$ Reduced ALDH1a1 function on $\alpha$ -synuclein aggregation.		
			<ul> <li>Inhibiting monoamine oxidase (MAO, an enzyme upstream of</li> </ul>		
			ALDH1a1) on $\alpha$ -synuclein aggregation and spread.		
			<ul> <li>Increased ALDH1a1 function on protecting dopamine neurons</li> </ul>		
			from $\alpha$ -synuclein aggregation.		
			Drug development:		
	0	nnaatina	This research investigates ALDH1a1 as a potential target for PD treatment. By		
		nnecting	understanding how it affects $\alpha$ -synuclein aggregation, researchers aim to:		
		<u>Dopamine</u>	<ul> <li>Validate ALDH1a1 as a therapeutic target for PD.</li> </ul>		
		Degradation Pathway	• Gain insights into α-synuclein transmission and aggregation in the brain.		
STANFORD		and Alpha-synuclein	<ul> <li>Potentially develop drugs that increase ALDH1a1 activity to slow PD</li> </ul>		
UNIVERSITY	DING, JUN	Aggregation	progression.		
			Research question:		
RESEARCH		Development	Develop potent and drug-like antagonists targeting the human Trace Amine-		
	DECKER, ANN	Development of	Associated Receptor 1 (hTAAR1) for potential treatment of Parkinson's disease		
INSTITUTE	M	hTAAR1 antagonists	(PD).		

Parkinson's Disease 3.0 Preclinical Landscape - DRAFT

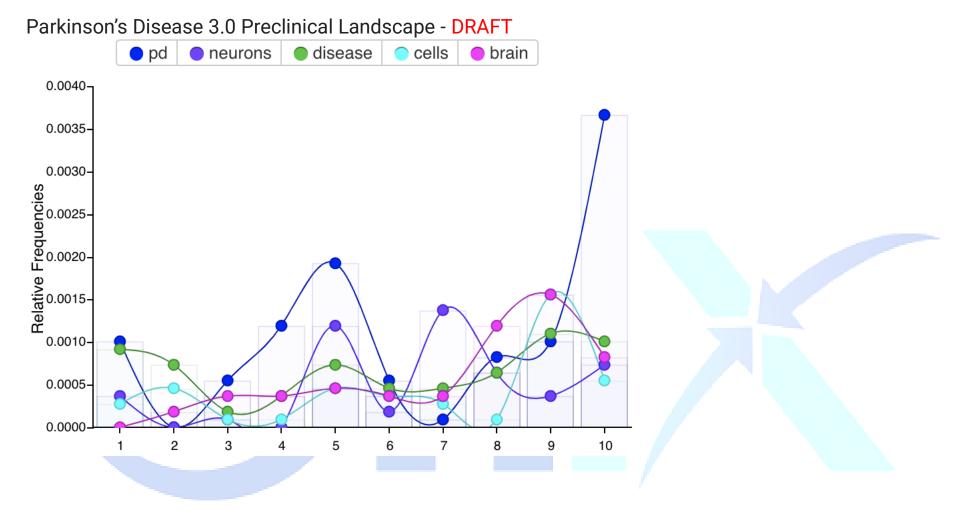
Organization					
Name	Project Leader	Project Title	OniX Summary		
			Stage:		
			Not directly mentioned, but likely in vitro (using cells) with the potential for		
			future in vivo studies.		
			Methods:		
			<ul> <li>Medicinal chemistry to design and synthesize novel hTAAR1 antagonists based on an existing lead compound (TAR-44).</li> </ul>		
			Pharmacology to evaluate the potency, selectivity, and drug-like		
			properties of the synthesized compounds.		
			Drug development:		
			This research directly aims to develop a new drug for PD. By creating potent		
			hTAAR1 antagonists, researchers hope to:		
			<ul> <li>Increase dopaminergic signaling and neuronal firing in the brain.</li> </ul>		
			<ul> <li>Improve the efficacy of L-DOPA, a current PD medication.</li> </ul>		
			Reduce neurodegeneration and potentially slow disease progression.		
			Research question 1: Pain mechanisms in Parkinson's disease (PD)		
			Stage:		
			In vivo (using rats)		
			Methods:		
			Lesion dopamine neurons in one hemisphere of rats to create a PD model.		
			<ul> <li>Implant electrodes in specific brain regions (subthalamic nucleus,</li> </ul>		
			anterior cingulate cortex, and ventromedial thalamic nucleus).		
	0.0	anastina	<ul> <li>Inject formalin into the rat's paw to induce pain.</li> </ul>		
		nnecting	Analyze behavioral pain responses and electrical activity in the brain		
			regions.		
			Drug development:		
			This research indirectly contributes to drug development by investigating the		
NATIONAL		Thalamo-Cortical	mechanisms of pain in PD. By understanding how pain processing is disrupted in		
INSTITUTE OF		Plasticity: Pain,	the parkinsonian brain, researchers may develop better pain management		
NEUROLOGICAL	WALTERS,	Executive Function	strategies for PD patients.		
DISORDERS	JUDITH	and Loss of	Research question 2: Cognitive function in PD		
AND STROKE	RICHMOND	<u>Dopamine</u>	Stage:		

Parkinson's	Disease 3.0 F	Preclinical	Landsca	be - DRAFT

Parkinson's Disease 3.0 Preclinical Landscape - DRAFT


Organization			
Name	Project Leader	Project Title	OniX Summary
			<ul> <li>Analyze electrical activity in the medial prefrontal cortex and mediodorsa</li> </ul>
			thalamus.
			Drug development:
			This research investigates the effects of drugs targeting dopamine D4 receptors
			on brain activity. By understanding how these drugs modulate brain circuits,
			researchers may develop new medications for schizophrenia.
			Research question:
			This research program investigates the genes and mechanisms underlying
			neurodegenerative diseases like amyotrophic lateral sclerosis (ALS),
			frontotemporal dementia (FTD), and Parkinson's disease (PD) using the fruit fly
			(Drosophila melanogaster) as a model organism.
			Stage:
			In vivo (using fruit flies) with potential extension to human patient tissue,
			mammalian cells, and primary neurons in culture.
			Methods:
			<ul> <li>Conduct genetic screens in fruit flies to identify genes that modify the toxicity of ALS/FTD-causing factors.</li> </ul>
			<ul> <li>Analyze the identified pathways in human patient tissue, mammalian</li> </ul>
			• Analyze the identified pathways in human patient tissue, manimalian cells, and primary neurons.
			<ul> <li>Use the fruit fly model to investigate the impact of risk factors like</li> </ul>
			traumatic brain injury and gut microbiota on neurodegenerative disease
			Drug development:
			This research does not directly develop a drug. It utilizes the fruit fly as a model
		Molecular Genetic	to understand the biological mechanisms of neurodegenerative diseases. By
		<u>Insight into</u>	identifying genes and pathways involved, researchers aim to:
		<u>Neurodegenerative</u>	<ul> <li>Gain insights into the underlying causes of ALS, FTD, and PD.</li> </ul>
UNIVERSITY OF	BONINI,	Disease from	Provide a foundation for developing future therapeutic strategies for
PENNSYLVANIA	NANCY M	<u>Drosophila</u>	these diseases.
			Research question:
		Oxidation-dependent	Does oxidative stress impair the function of a neuronal survival protein (MEF2D
EMORY		Regulation of MEF2D	in multiple cellular compartments, contributing to neurodegenerative diseases
UNIVERSITY	MAO, ZIXU	<u>in Neuronal Stress</u>	like Parkinson's disease (PD)?

Parkinson's Disease 3.0 Preclinical Landscape - DRAFT


Organization			
Name	Project Leader	Project Title	OniX Summary
			<ul> <li>Stage:         <ul> <li>In vitro (using cells) and in vivo (using animal models)</li> </ul> </li> <li>Methods:         <ul> <li>Investigate how oxidative stress affects MEF2D in neurons.</li> <li>Analyze:                 <ul> <ul> <ul></ul></ul></ul></li></ul></li></ul>
VANDERBILT UNIVERSITY	ASCHNER, MICHAEL	<u>Mechanisms of</u> <u>Manganese</u> <u>Neurotoxicity</u>	Research question:         Do mutations in genes associated with Parkinson's disease (PD) (dj-1 and pink1)         and their chaperone proteins make dopamine-producing neurons more         susceptible to manganese (Mn)-induced damage?         Stage:         In vivo (using the nematode Caenorhabditis elegans)         Methods:         • Use RNA interference (RNAi), mutations, and overexpression to manipulate genes in C. elegans.         • Analyze:         • Dopamine neuron degeneration         • Alpha-synuclein aggregation         • Markers of oxidative stress

Parkinson's Dise	ase 3.0 Preclinical	Landscape - DRAFT

Organization			
Name	Project Leader	Project Title	OniX Summary
			<ul> <li>Mitochondrial function</li> </ul>
			<ul> <li>Expose worms to Mn with different genetic modifications.</li> </ul>
			Drug development:
			This research does not directly develop a drug. It investigates the link between
			mutations in PD-related genes and Mn exposure in a worm model. By
			understanding how these factors affect dopamine neurons, researchers aim to:
			Gain insights into the mechanisms of Mn-induced neurotoxicity in PD
			Identify potential therapeutic strategies to protect neurons from Mn-
			induced damage



13



## **Connecting Ideas to Opportunities**