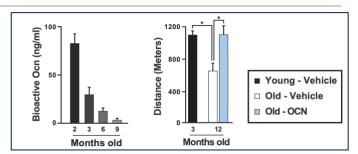
KTIN Therapeutics - One-Pager

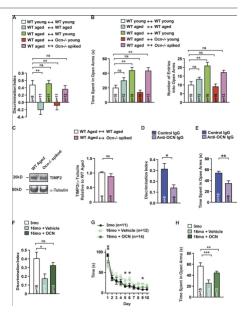

Transforming Human Health with Osteocalcin Peptide Analogs

\$2M Seed Round | Columbia University Spinout

Contact: Martin Duenas -CEO | martin@onixhub.com

The Problem

- Muscle decline:
 - Sports recovery athletes & rehab patients need faster repair.
 - o Sarcopenia affects >200M aging adults worldwide.
 - Cachexia severe muscle wasting in cancer & chronic illness.



OCN corrects the age-related decline in exercise – <u>Karsenty, Cell Metab 2016</u>

- Cognitive decline: Growing burden of MCI and Alzheimer's, Parkinson's Cognitive Decline.
- Metabolic diseases: T2D, obesity, NAFLD costing trillions globally.
- Rare neuromuscular diseases: LGMD, SMA, OI and related disorders with no cures.

Our Solution

- Osteocalcin Peptide Analogs (OCN-PAs): Novel, patent-protected engineered peptides mimicking a bone-derived hormone.
- Validated by 20+ years of science, \$10M+ NIH funding, and 150+ publications (<u>Karsenty</u>, Columbia).
- Multi-modal benefits:
 - Stimulates muscle regeneration & endurance.
 - o Improves **cognitive performance** via neurotransmitter modulation.
 - Enhances glucose metabolism & insulin sensitivity.
- **Proven modality:** Peptide analogs (GLP-1, insulin, PTH) have delivered blockbuster drugs.
- Natural, safe, scalable with strong IP protection.

OCN is sufficient to improve cognitive function and anxiety-like behaviors – <u>Karsenty, JEM 2017</u>

Market Opportunity

• Sports recovery & performance: \$10B+

• Sarcopenia / frailty: \$20B+

• Cachexia: \$5B+

Cognitive decline: \$20B+Metabolic diseases: \$50B+

• Rare neuromuscular: Orphan designation, premium pricing

Total Addressable Market: \$100B+

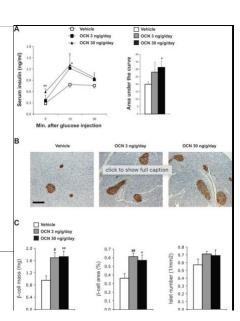
Pipeline Snapshot

Program	Indication	Stage → Next Milestone
KTIN-100	Muscle (sports recovery, sarcopenia, cachexia)	Discovery → Preclinical
KTIN-200	Cognitive decline (MCI, Alzheimer's support)	Discovery → Preclinical
KTIN-300	Metabolic (T2D, obesity, NAFLD)	Discovery → Preclinical
KTIN-R	Rare bone and neuromuscular (LGMD, SMA, TBA)	Exploratory

Competitive Advantage

- First-in-class osteocalcin peptide analogs.
- **Science-first validation**: Columbia discovery + \$10M+ NIH grants.
- Multi-domain benefit: Muscle > Cognition > Metabolism > Rare.
- Strong IP moat: Patentable engineered peptides.
- Lower safety risk vs. synthetic drugs or biologics.

Human studies support Dr. Gerard Karsenty's seminal work on osteocalcin. Refer to the attached references for supporting evidence.


Investment Opportunity

Ask: \$2M seed → 18-month preclinical proof-of-concept.

Plan: Synthesis, optimization, preclinical studies \rightarrow IND-ready candidate.

Exit: Acquisition/licensing by leaders (Novo Nordisk, Lilly, Pfizer, Amgen).

ROI: 10x+ through partnerships, licensing, and rare disease opportunities.

Daily injections of osteocalcin increase insulin secretion and β -cell mass in wild-type mice – <u>Karsenty, Bone 2013</u>

Recent studies in Humans validating Osteocalcin Role

- Levinger I, Scott D, Nicholson GC, Stuart AL, Duque G, McCorquodale T, Herrmann M, Ebeling PR, Sanders KM. Undercarboxylated osteocalcin, muscle strength and indices of bone health in older women. Bone. 2014 Jul;64:8-12.
- **Summary:** This study found that **undercarboxylated osteocalcin** is positively associated with both muscle strength and bone mineral density in older women, suggesting it may play a role in the bone-muscle relationship.
- <u>Liu, Shuying, et al.</u> "Association of serum osteocalcin with bone microarchitecture and muscle mass in Beijing community-dwelling postmenopausal women." Endocrine 84.1 (2024): 236-244.
- Summary: This research indicates that serum osteocalcin levels are positively correlated with bone microarchitecture
 and muscle mass in postmenopausal women, suggesting a potential role for osteocalcin in maintaining both skeletal and
 muscular health.
- Chen, Xi, et al. "Vitamin D status and its associations with bone mineral density, bone turnover markers, and parathyroid hormone in Chinese postmenopausal women with osteopenia and osteoporosis." Frontiers in Nutrition 10 (2024): 1307896.
- Summary: This study, while focusing on vitamin D, identifies osteocalcin as a key bone turnover marker and explores its relationship with bone mineral density and parathyroid hormone in Chinese postmenopausal women with low bone mass.
- Vitale, Jacopo Antonino, et al. "Circulating carboxylated osteocalcin correlates with skeletal muscle mass and risk of fall in postmenopausal osteoporotic women." Frontiers in Endocrinology 12 (2021): 669704.
- **Summary:** This paper demonstrates that circulating levels of **carboxylated osteocalcin** are positively correlated with skeletal muscle mass and negatively correlated with the risk of falls in postmenopausal women with osteoporosis.
- Zheng WB, Hu J, Zhao DC, Zhou BN, Wang O, Jiang Y, Xia WB, Xing XP, Li M. The role of osteocalcin in regulation of glycolipid metabolism and muscle function in children with osteogenesis imperfecta. Front Endocrinol (Lausanne). 2022 Aug 2;13:898645.
- **Summary:** This article explores how **osteocalcin** plays a significant regulatory role in glycolipid metabolism and muscle function, specifically in children afflicted with osteogenesis imperfecta.
- Liu, D-M., X-Z. Guo, H-J. Tong, B. Tao, L-H. Sun, H-Y. Zhao, G. Ning, and J-M. Liu. "Association between osteocalcin and glucose metabolism: a meta-analysis." Osteoporosis International 26, no. 12 (2015): 2823-2833.
- **Summary:** This meta-analysis synthesized data from multiple studies and found a significant positive association between circulating **osteocalcin** levels and improved glucose metabolism, supporting its role as a bone-derived hormone that influences blood sugar regulation.
- Zeng, Hailuan, Jieyu Ge, Wenjie Xu, Hui Ma, Lingyan Chen, Mingfeng Xia, Baishen Pan, Huandong Lin, Sijia Wang, and Xin Gao. "Type 2 diabetes is causally associated with reduced serum osteocalcin: a genomewide association and mendelian randomization study." Journal of Bone and Mineral Research 36, no. 9 (2020): 1694-1707.
- **Summary:** This genetic study provides evidence for a causal link, showing that **type 2 diabetes** is associated with lower serum osteocalcin, which supports osteocalcin's role in glucose regulation.
- Lin, Xuzhu, Tara C. Brennan-Speranza, Itamar Levinger, and Bu B. Yeap. "Undercarboxylated osteocalcin: experimental and human evidence for a role in glucose homeostasis and muscle regulation of insulin sensitivity." Nutrients 10, no. 7 (2018): 847.
- Summary: This review highlights both experimental and human evidence supporting the role of undercarboxylated osteocalcin in maintaining glucose homeostasis and regulating insulin sensitivity within skeletal muscle.

Rare Bone Diseases with Muscle Weakness: Adjunct Therapy Opportunity The Osteocalcin Advantage in Rare Diseases

Triple-Mechanism Therapeutic Action:

- Myocyte Function Enhancement: Direct stimulation of muscle fiber contractility and endurance capacity through calcium signaling modulation
- Neuroprotective Effects: Neurotransmitter regulation (GABA/glutamate balance) supporting cognitive function and potentially addressing neurological complications
- Metabolic Homeostasis: Glucose-insulin axis optimization through enhanced βcell function and peripheral insulin sensitivity

Clinical Rationale:

- Zheng et al. (2022) demonstrated OCN's regulatory role in glycolipid metabolism and muscle function in pediatric osteogenesis imperfecta
- Natural bone-derived hormone minimizes off-target effects compared to synthetic therapeutics
- Addresses systemic complications beyond primary disease pathology

Regulatory & Market Advantages:

- Orphan Drug Designation eligibility across multiple rare conditions
- Premium pricing potential (\$150K-\$750K annually) with strong reimbursement
- Limited competition in bone-muscle interface therapeutics

Target Conditions for KTIN-R Program

Condition	Key Symptoms	Unmet Need	Patients	How OCN Can Address
			Affected	
Osteogenesis	Brittle bones,	Current treatments only	~20,000-	Improve muscle function +
Imperfecta (OI)	muscle weakness,	target bone strength,	50,000 (US)	bone mineralization +
	short stature	ignore muscle weakness		metabolic support
Limb-Girdle	Progressive	No disease-modifying	~1 in 14,500-	Enhanced myocyte
Muscular	hip/shoulder	treatments available	123,000	contractility + bone
Dystrophy (LGMD)	weakness, bone			preservation + cognitive
	fragility			support
Spinal Muscular	Severe muscle	Gene therapies don't	~1 in 8,000-	Complement gene therapy:
Atrophy (SMA)	weakness, bone	address bone	10,000 births	muscle function + bone
	fractures,	complications		protection + metabolic
	respiratory issues			optimization
Duchenne	Progressive	Steroids cause severe	~1 in 3,500	Counter steroid effects:
Muscular	muscle loss,	bone side effects	males	optimize muscle function +
Dystrophy (DMD)	steroid-induced			bone health + glucose
	bone loss			homeostasis
Hypophosphatemic	Soft bones,	Limited efficacy of	~1 in 20,000	Direct bone mineralization +
Rickets	muscle weakness,	phosphate/vitamin D	globally	myocyte enhancement +
	dental issues	supplements		metabolic regulation

KTIN-R leverages osteocalcin's unique systemic hormone properties to address the bone-muscle-metabolic axis in rare diseases where current therapies have significant gaps.