Organization Name	Project Leader	Project Title	OniX Summary
NATIONAL INSTITUTE OF ARTHRITIS AND MUSCULOSKELETAL AND SKIN DISEASES	GADINA, MASSIMO	Translational Immunology research: a support for clinical immunological research	 Research Question: The abstract describes various research projects undertaken by the TIS, but doesn't focus on a single specific question. Stage: The research involves a mix of in vitro (experiments conducted in the lab using cells or molecules) and in vivo (experiments conducted with live animals) studies. Methods: The TIS utilizes various methods including: Measuring cytokine levels to assess immune function. Genetic analysis to identify polymorphisms associated with autoimmune diseases. Deep immunophenotyping to analyze immune cell composition. Drug Development: The TIS is involved in characterizing biomarkers for autoimmune diseases and evaluating the effects of existing drugs like tocilizumab and JAK inhibitors on immune cells. Focus Areas: Relapsing polychondritis (RP). Giant cell arteritis. COVID-19 and its effects on patients with systemic autoimmunity. Systemic Juvenile Idiopathic Arthritis (SJIA). SHARPIN deficiency and its associated symptoms. Innate Lymphoid Cells (ILCs) and their role in autoimmune diseases.

Organization Name	Project Leader	Project Title	OniX Summary
UNIVERSITY OF PITTSBURGH AT PITTSBURGH	HIRSCH, RAPHAEL	Role of FSTL-1 in Arthritis	 The TIS collaborates with various internal and external researchers on different projects. Overall, the TIS is involved in diverse research efforts to improve our understanding of autoimmune diseases and develop new therapeutic strategies. Research Question: Does FSTL-1 play a central role in arthritis, and can its neutralization be a novel therapeutic approach? Stage: This research involves a mix of in vitro (experiments conducted in
			 the lab using cells) and in vivo (experiments conducted with live animals) studies. Methods: DNA microarray gene expression analysis in mice with collagen-induced arthritis (CIA) Overexpression and neutralization of FSTL-1 in mice Analysis of FSTL-1 expression in human rheumatoid arthritis tissues Studying how FSTL-1 induces Th17 cells (immune cells involved in autoimmunity)
	Con	necting Ide	 Drug Development: This research focuses on investigating FSTL-1 as a potential therapeutic target for arthritis by neutralizing it with antibodies. Findings: FSTL-1 is highly overexpressed in arthritic joints of mice and humans. Overexpressing FSTL-1 worsens arthritis in mice, while neutralization improves it. FSTL-1 can induce the development of Th17 cells, which are important for autoimmune diseases like arthritis. Future Directions:

Organization Name	Project Leader	Project Title	OniX Summary
			 Understand how FSTL-1 promotes inflammation and Th17 cell development. Identify the factors regulating FSTL-1 expression. Develop and test FSTL-1 neutralizing antibodies for arthritis treatment. Public Health Relevance: This research may lead to a better understanding of arthritis and potentially novel therapeutic strategies targeting FSTL-1.
UNIVERSITY OF ALABAMA AT BIRMINGHAM	MOUNTZ, JOHN D	Suppression of pathogenic autoantibodies in lupus by inhibition of AID	 Research Question: Does IL-17 promote the formation of germinal centers (GCs) leading to pathogenic autoantibodies in autoimmune diseases like rheumatoid arthritis? Stage: This research proposes in vitro (experiments conducted in the lab using cells) and in vivo (experiments conducted with live animals) studies. Methods: Analyze the effects of IL-17 on B cell migration, activation-induced cytidine deaminase (AID) expression, and autoantibody production. Use techniques like confocal microscopy, flow cytometry, transwell chambers, and live imaging to study cell behavior. Utilize shRNA technology and targeted knockout mice to modulate IL-17 signaling and RGS proteins. Employ a newly developed collagen-induced arthritis (CII) model in BXD2 mice. Drug Development: This research doesn't directly focus on drug development, but explores mechanisms to potentially block GC formation and autoantibody production as a novel therapeutic approach for autoimmune diseases.

Organization Name	Project Leader	Project Title	OniX Summary
			 The study investigates the role of IL-17 in promoting the interaction between B and T cells, leading to the formation of GCs where autoreactive B cells are generated. It explores the involvement of regulators of G-protein signaling (RGS) proteins in this process. The research aims to distinguish the contribution of autoantibodies versus inflammatory responses in rheumatoid arthritis development. Significance: Blocking GC formation could be a novel therapeutic strategy to prevent the generation of pathogenic autoantibodies in autoimmune diseases. Understanding the mechanisms of IL-17 driven autoimmunity can lead to new therapeutic targets. Overall, this research investigates a potential pathway for IL-17 driven autoantibody production in GCs and its role in rheumatoid arthritis, aiming to identify novel therapeutic targets.
JESSE BROWN VA MEDICAL CENTER	SHAHRARA, SHIVA	Discovering a novel therapy for RA patients	 Research Question: Can targeting Toll-like receptor 5 (TLR5) with a specific antibody be an effective treatment strategy for RA patients who don't respond to existing therapies?
	Con	necting Ide	 Stage: This research proposes in vitro (experiments conducted in the lab using cells) and in vivo (experiments conducted with live animals) studies. Methods:
			 Analyze TLR5 expression in macrophages from RA patients and its correlation with disease activity. Investigate how TLR5 ligands present in RA synovial fluid activate macrophages and T cells. Evaluate the effects of a novel TLR5 antibody on macrophage and T cell function.

Organization Name	Project Loador	Project Title	OniX Summary
	Leader	hectina Ide	 Use pre-clinical models to compare the efficacy of TLR5 antibody therapy with existing RA treatments. Drug Development: This research focuses on developing a novel therapeutic approach - a TLR5 antibody - for RA patients who are unresponsive to current treatments like anti-TNF drugs. Focus: The study investigates the role of TLR5 in activating macrophages and Th17 cells, which contribute to the inflammatory process in RA. It explores the potential of a TLR5 antibody to block the interaction between macrophages and T cells, thereby halting the inflammatory cascade. The research aims to establish a new treatment option for RA patients who don't respond to existing therapies. Significance: A successful TLR5 antibody therapy could benefit veterans and civilians with RA by improving their quality of life and reducing healthcare costs. This research may lead to a novel therapeutic strategy for a subset of RA patients who have limited treatment options.
UNIVERSITY OF CALIFORNIA, SAN DIEGO	FIRESTEIN, GARY S	Pathogenic role of ILC2 in rheumatoid arthritis	 Research Question: Do ILC2s play a pathogenic role in RA by promoting joint inflammation and destruction through the production of amphiregulin (AREG)? Stage: This research proposes in vitro (experiments conducted in the lab using cells) and in vivo (experiments conducted with live animals) studies.

Rheumatoid Arthritis Preclinical Landscape - DRAFTOrganization NameProjectProject TitleOniX Summary

Organization Name	Project	Project Title	OniX Summary
	Leader		
			 Methods: Analyze AREG levels in the joints of arthritic mice and its cellular source. Investigate the effects of AREG on fibroblast-like synoviocytes (FLS) function in vitro. Use mouse models to assess the impact of ILC2-derived AREG on arthritis development. Drug Development: This research doesn't directly focus on drug development, but explores a novel pathway involving ILC2 and AREG as potential therapeutic targets for RA. Focus: The study investigates a potentially counterintuitive concept - whether ILC2s, usually considered anti-inflammatory, can promote RA through AREG production. It explores the role of AREG in activating FLS, which contribute to joint destruction in RA. The research aims to understand the ILC2-AREG-FLS axis and its contribution to RA pathogenesis. Significance: Validating this concept could open doors for novel therapeutic strategies targeting the ILC2-AREG pathway in RA. Overall, this research investigates a novel mechanism by which ILC2s might contribute to RA and explores a potential new target for therapeutic intervention.
ABWIZ BIO, INC.	MARUYAMA, TOSHI	Engineering a unique antibody for patients with RA	 Research Question: Can a high-affinity humanized anti-TLR5 antibody be developed a a novel therapy for RA patients who are unresponsive to existing treatments? Stage: This research involves a combination of in vitro (experiments conducted in the lab using cells) and in vivo (experiments

Organization Name	Project Project Title Leader	OniX Summary
	Connecting	 conducted with live animals) studies, with an emphasis on antibody development. Methods: Phage display library screening to identify high-affinity TLR5 binding human Fab fragments. Analysis of Fab clones for TLR5 neutralization capacity in human and murine cells. Site-directed mutagenesis to enhance the affinity of the most promising Fab clones. Testing the ability of anti-TLR5 antibody candidates to block the inflammatory response induced by RA synovial fluid in humanized RA mouse models. Drug Development: This research directly focuses on developing a novel therapeutic drug - a high-affinity humanized anti-TLR5 antibody - for RA patients who don't respond to current therapies like anti-TNF drugs. Focus: The study builds upon previous findings that TLR5 activation contributes to RA by promoting M1 macrophage and Th17 cell activity. It aims to develop a specific antibody that neutralizes TLR5, thereby disrupting the pro-inflammatory pathway in these patients. The research emphasizes improving the affinity of the antibody candidate for optimal therapeutic efficacy. Significance: A successful anti-TLR5 antibody could provide a new treatment option for a subset of RA patients who have limited treatment options.

Rheumatoid Arthritis Preclinical Landscape - DRAFTOrganization NameProjectProject TitleOniX Summary

Organization Name	Project Leader	Project Title	OniX Summary
			Overall, this research focuses on the development of a humanized anti- TLR5 antibody as a potential therapeutic strategy for RA patients who are unresponsive to current therapies.
MAYO CLINIC ROCHESTER	WEYAND, CORNELIA M.	Oligocional T Cell Expansion and Rheumatoid Arthritis	 Research Question: How do metabolic abnormalities in T cells contribute to the development and progression of RA, and can these abnormalities be targeted for therapeutic intervention? Stage: This research proposes in vitro (experiments conducted in the lab using cells) studies with the potential for future in vivo studies. Methods: Analyze metabolic profiles of T cells from RA patients compared to healthy controls. Investigate the effects of manipulating T cell metabolism on their differentiation, survival, and function. Explore how metabolic changes influence T cell interactions with other immune cells and tissues relevant to RA. Identify potential small molecule drugs that can restore normal T cell metabolism and function. Drug Development: This research focuses on identifying potential therapeutic targets based on metabolic abnormalities in RA T cells. The project proposes the development of small molecule drugs that can modulate T cell metabolism and function. Focus: The study investigates how altered glucose metabolism in RA T cells leads to increased production of proinflammatory cytokines and a shift towards T helper 17 (Th17) and T follicular helper (Tfh) cell development. It explores the role of redox signaling pathways and key enzymes like PFKFB3 and G6PD in T cell function.

Organization Name	Project Leader	Project Title	OniX Summary
			 The research aims to identify how metabolic reprogramming affects T cell interactions with other immune cells and tissues involved in RA pathogenesis. Significance: Understanding the link between metabolism and T cell function in RA could lead to novel therapeutic strategies targeting metabolic pathways to prevent or treat the disease. Overall, this research investigates the role of metabolic abnormalities in RA T cells and explores the potential for metabolic intervention as a novel therapeutic approach for RA.
VANDERBILT	MAJOR,	Targeting the T cell	Research Question:
UNIVERSITY	AMY S	immune synapse in	Can specific inhibition of the immune synapse between T cells
MEDICAL CENTER		autoimmunity	and antigen-presenting cells (APCs) be a therapeutic approach for
			SLE?
	Con	necting Ide	 Stage: This research proposes in vitro (experiments conducted in the lab using cells) studies with the potential for future in vivo studies. Methods: Develop CD4-targeted nanoparticles loaded with a small molecule, eggmanone (Egm), that disrupts the immune synapse. Investigate the effects of Egm-loaded nanoparticles on T cell interaction with APCs.

Organization Name	Project Leader	Project Title	OniX Summary
NATIONAL INSTITUTE OF ALLERGY AND INFECTIOUS DISEASES	Leader LENARDO, MICHAEL J	Molecular Mechanisms Of The Autoimmune Lymphoproliferative Syndrome	 It utilizes a small molecule, Egm, delivered by nanoparticles conjugated with an anti-CD4 antibody fragment to specifically target CD4+ T cells. The research aims to prevent T cell help for B cells and ultimately reduce autoantibody production in SLE. Significance: A successful approach targeting the immune synapse could lead to a novel and specific therapy for SLE with fewer side effects compared to broad immunosuppression. Overall, this research investigates a new therapeutic strategy for SLE by targeting the immune synapse between T and B cells using CD4-targeted nanoparticles loaded with an immune synapse disrupting molecule. Research Question: This research focuses on identifying genetic mutations that cause various immune disorders and developing targeted therapies based on these discoveries. Stage: This research involves a combination of clinical studies with patients (observational), in vitro (experiments conducted in the lab using cells), and potentially in vivo (experiments conducted with live animals) studies. Drug Development: Hydroxychloroquine for LRBA deficiency (LATAIE) Abatacept for LRBA deficiency and potentially CHAI disease Eculizumab for CD55 deficiency (CHAPLE) disease

Rheumatoid Arthritis Preclinical Landscape - DRAFT Organization Name Project Project Title

Organization Name	Project Leader	Project Title	OniX Summary
Kobe University	TBA	Regulation of neddylation system as a novel therapeutic target of rheumatoid arthritis and rheumatoid lung	 causing various disorders like ALPS, CHAI, LATAIE, RALD, and CHAPLE. It explores the mechanisms by which these mutations lead to immune dysregulation and proposes targeted therapies to address the underlying causes. The research emphasizes the importance of clinical observations, genetic analysis, and functional studies in understanding immune disorders and developing personalized treatments. Significance: Identifying specific gene mutations allows for a more precise diagnosis of immune disorders and the development of targeted therapies with potentially fewer side effects compared to broad immunosuppression. Overall, this research contributes to precision medicine for immunological diseases by linking genetic variations to specific disorders and proposing targeted therapeutic approaches. Research Question: Can targeting the neddylation pathway be a novel therapeutic approach for rheumatoid arthritis (RA) and its associated interstitial pneumonia (IP)? Stage: This research proposal is likely in the early stages and hasn't specified the methods in detail. Drug Development: The study explores the role of neddylation, a cellular process involving the NEDD8 protein, in RA and associated lung disease. Given neddylation's involvement in cell survival, proliferation, and inflammation, the research suggests it might be a target for therapeutic intervention.

Organization Name	Project Leader	Project Title	OniX Summary
			 Significance: If successful, this research could lead to a novel treatment for RA and its associated lung complications. Overall, this research proposes targeting the neddylation pathway as a potential therapeutic strategy for RA and interstitial pneumonia, but more information is needed on the specific methods and approaches.
Nagoya City University	Yoko Miura	<u>Characterization of</u> <u>neovascular cells in</u> <u>pannus leads to novel</u> <u>therapeutic strategies for</u> <u>rheumatoid arthritis.</u>	 Research Question: What are the characteristics of the newly identified neovascular cell population in RA, and can they be targeted therapeutically to suppress disease progression? Stage: This research proposes in vitro (experiments conducted in the lab using cells) and potentially in vivo (experiments conducted with live animals) studies based on analysis from an existing arthritis model. Drug Development: This research focuses on identifying the characteristics of novel neovascular cells in RA with the goal of developing therapies that target these cells to prevent disease progression. The project suggests that blocking new blood vessel formation (neovascularization) could be a therapeutic target for RA and potentially other diseases like cancer. Focus: The study investigates a specific population of neovascular cells found in the pannus tissue of RA joints. It aims to understand the characteristics of these cells and their role in supplying nutrients and oxygen to the affected joint. The research explores the potential of targeting these cells to inhibit neovascularization and suppress RA progression.

3/23/24

Organization Name	Project Leader	Project Title	OniX Summary
			 Identifying and targeting these novel neovascular cells could lead to a new therapeutic approach for RA by cutting off nutrient and oxygen supply to inflamed joints. The findings might also be applicable to other diseases characterized by neovascularization. Overall, this research investigates a specific type of neovascular cell in RA and explores its potential as a therapeutic target to prevent disease progression.

Connecting Ideas to Opportunities