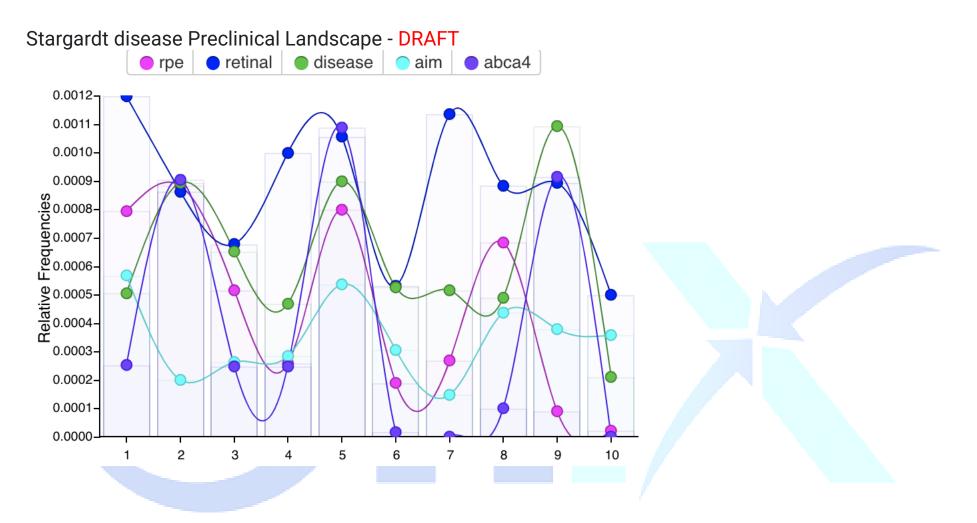
Organization Name	Project	Des - 1 4 (T) 41 -	OniX Summary
Name	Leader	Project Title	Research Question: How is autophagy regulated in the retinal pigment epithelium (RPE) and how can it be
			therapeutically targeted for age-related macular degeneration (AMD)?
			Stage: In vitro with animals
			Methods:
			High-speed live imaging of polarized primary adult RPE monolayers
UNIVEDCITY			Gene disruption
UNIVERSITY OF			Abca4-/- mouse model of Stargardt disease
CALIFORNIA,		Mechanisms of cellular	Drug Development: This research is not directly aimed at drug development, but rather aims to understand
SAN	LAKKARAJ	clearance in the retinal	the mechanisms of autophagy in the RPE, which may inform future therapeutic targets for AMD.
FRANCISCO	U, APARNA	pigment epithelium	
			Research Question: How do beta cyclodextrins (BCDs) remove toxic lipid bisretinoids (LBs) from retinal
			pigment epithelium (RPE) cells?
			Stage: In vitro with animals and potentially transitioning to human trials (clinical trials)
			• Cell cultures
			 Enucleated eyecups from ABCA4/RDH8 double knockout mice
			 Intravitreal injection in ABCA4/RDH8 knockout mice
WEILL			 Development of βCD-threaded polyrotaxanes for enhanced delivery
MEDICAL			Drug Development: This research directly targets drug development by investigating β CDs and β CD-
COLL OF	NOCIARI,	Modulation of Lipid	threaded polyrotaxanes as potential therapies for Stargardt disease (STGD1), cone-rod dystrophy (CRD),
CORNELL	MARCELO	Bisretinoids Clearance	retinitis pigmentosa (RP), and Age-Related Macular Degeneration (AMD). These therapies could potentially
UNIV	М	with Beta-Cyclodextrins	be moved to human trials if successful in animal models.
			Research Question: Not directly applicable (This is a protocol to obtain tissue samples for research on various retinal diseases)
			Stage: In vitro
			Methods:
		Generation of Induced	Skin biopsy and blood collection from human subjects with various retinal diseases
		Pluripotent Stem (iPS)	Drug Development: Not directly applicable (This is a protocol to obtain tissue samples for research on
		Cell Lines from Somatic	various retinal diseases)
NATIONAL		Cells of Participants with Eye Diseases and from	Key Point: This protocol collects skin and blood samples from patients with various retinal diseases to create patient-specific induced pluripotent stem cells (iPSCs). These iPSCs can then be differentiated into retinal
EYE	HUFNAGEL,	Somatic Cells of	pigment epithelium (RPE) or neural retina cells for further research on the specific diseases. This research
INSTITUTE	ROBERT	Matched Controls	aims to improve our understanding of retinal diseases at the cellular and molecular level.
			Research Question: How do the different forms of retinal (all-trans retinal, 11-cis retinal, and 11-cis retinol)
			affect cone photoreceptors and contribute to vision loss in diseases like Age-related Macular Degeneration (AMD)?
MEDICAL			Stage: In vitro with isolated cone photoreceptors from monkey and human donor eyes
UNIVERSITY			Methods:
OF SOUTH	KOUTALOS,	Transport Processes in	Fluorescence imaging of single cone photoreceptors
CAROLINA	YIANNIS	Photoreceptors	Measuring oxidative damage and formation of lipofuscin fluorophore precursors

3/24/24Prepared by Martin Dueñas - CONFIDENTIAL

—			
			Drug Development: This research indirectly informs drug development for retinal diseases by providing a better understanding of the mechanisms of damage caused by different retinal forms. This knowledge can be
			used to evaluate the potential risks and benefits of various treatment approaches.
			Key Point: This study focuses on cone photoreceptors and their susceptibility to damage from different
			retinal forms. By comparing the effects of all-trans retinal, 11-cis retinal, and 11-cis retinol, the researchers
			aim to understand how these molecules contribute to macular degeneration and vision loss. The findings can
			inform the development of safer and more effective therapies for retinal diseases.
			Research Question: Does 11-cis retinal damage human rod photoreceptors and contribute to vision loss in
			diseases like Age-Related Macular Degeneration (AMD) and Stargardt disease?
			Stage: In vitro with isolated rod photoreceptors from human donor eyes (with comparison to mouse rods) Methods:
			Fluorescence imaging of single photoreceptors
			Measuring oxidative damage and formation of lipofuscin precursors
			Microspectrophotometry to measure rhodopsin levels
			Drug Development: This research indirectly informs drug development for retinal diseases by providing a
			better understanding of the potential toxicity of 11-cis retinal and its role in rhodopsin regeneration. This
			knowledge can be used to evaluate the potential risks and benefits of therapies that manipulate 11-cis retinal levels.
			Key Point: This study investigates the effects of 11-cis retinal on human rod photoreceptors. By comparing
MEDICAL			the effects of sequestering or increasing 11-cis retinal, the researchers aim to understand how this molecule
UNIVERSITY			might contribute to vision loss in retinal diseases. The findings can inform the development of safer and more
OF SOUTH	KOUTALOS,	Transport Processes in	effective therapies by providing insights into the risks and benefits of manipulating 11-cis retinal levels for
CAROLINA	YIANNIS	Photoreceptors	treatment
			Research Question: This research focuses on P-glycoprotein (Pgp), a protein involved in multidrug
			resistance (MDR) of cancer cells. The study has several aims:
	_		1. Understand the mechanism of ATP hydrolysis and drug transport by Pgp.
			 Develop non-toxic inhibitors of Pgp to reverse MDR. Determine the 3D structure of human Pgp.
			 Investigate the role of Pgp in cancer stem cells.
			 Identify genes associated with MDR in cancer patients.
			Stage: In vitro and animal studies (with some human tissue studies)
	· · · ·	Connecti	Methods:
	· · · ·	Johneoth	Protein purification and functional assays of Pgp mutants
			 Screening of natural products and other compounds for Pgp inhibition
			Crystallization trials for obtaining 3D structure of human Pgp
			 Analysis of gene expression in cancer cells and patient samples
			Drug Development: This research directly targets drug development by aiming to identify new therapeutic
			strategies to overcome MDR in cancer patients. The project investigates natural products and other
DUBBONOE			compounds that can inhibit Pgp, potentially improving the efficacy of chemotherapy.
DIVISION OF		Discharging Anglasis (Key Points: The study focuses on Dan a protein that numps anticoncer drugs out of concer calls, reducing their
BASIC SCIENCES -	AMBUDKA	Biochemical Analysis of Multidrug Resistance-	• The study focuses on Pgp, a protein that pumps anticancer drugs out of cancer cells, reducing their effectiveness.
NCI	R, SURESH	linked Transport Proteins	 Researchers are looking for ways to inhibit Pgp to improve chemotherapy outcomes.
Inci	R, SURESH	mixed fransport riotems	• Researchers are looking for ways to minor r gp to improve chemotherapy outcomes.


Prepared by Martin Dueñas - CONFIDENTIAL


otargarata			
			 The project involves various approaches, including protein biochemistry, inhibitor screening, structural biology, and gene expression analysis. This research holds promise for developing new drugs to overcome MDR and improve cancer treatment.
			 Research Question: How does lipofuscin accumulate and clear in the retinal pigment epithelium (RPE) of patients with ABCA4 disease?
			• Can lipofuscin accumulation be used as a marker for early detection and treatment of ABCA4 disease?
			• Can specific compounds modify the accumulation and clearance of lipofuscin in ABCA4 patients? Stage: In vivo (human subjects) Matheday
			Methods:
			• Quantitative ophthalmic techniques (unspecified) to measure lipofuscin accumulation and clearance over time
			 Development of a clinical outcome measure based on lipofuscin microtopography
			 Pilot studies with compounds targeting lipofuscin accumulation/clearance
			Drug Development: This research directly targets drug development for ABCA4 disease by:
			• Investigating lipofuscin accumulation as a potential therapeutic target.
			• Testing pilot studies with compounds that may modify lipofuscin levels.
			Key Points:
			• This study focuses on understanding lipofuscin accumulation and clearance in ABCA4 disease patients.
			• Researchers aim to develop a method to measure lipofuscin as a marker for early detection and
UNIVERSITY OF		Viewel evels in how on	treatment.
PENNSYLVA	CIDECIYAN	Visual cycle in human photoreceptor and RPE	 The project tests potential therapeutic compounds that may affect lipofuscin levels in pilot studies. This research may inform the development of new therapies for ABCA4 disease and potentially
NIA	, ARTUR V	disease	other retinal diseases with similar pathologies.
	-		Research Question: This research investigates the role of lipofuscin, a cellular byproduct, in various retinal
			diseases using a technique called quantitative fundus autofluorescence (qAF).
			• Specific Aim 1: Does lipofuscin accumulation in the retina make eyes more susceptible to the toxic
	C (Connecti	effects of hydroxychloroquine (HCQ)? Can qAF levels be used as an early marker for HCQ toxicity?
			Specific Aim 2: Why do female carriers of choroideremia have lower levels of lipofuscin as measured by qAF?
			 Specific Aim 3: Is there a link between loss of the ellipsoid zone (a retinal layer) observed in
			spectral-domain optical coherence tomography (SD-OCT) images and changes in qAF in patients with central serous chorioretinopathy?
			 Specific Aim 4: In patients with ABCA4 mutations, why is the distribution of elevated qAF not
COLUMBIA			• Specific Ann 4. In patients with ABCA4 mutations, why is the distribution of elevated qAF not uniform across the retina? How can multimodal imaging techniques help us understand this?
UNIVERSITY	SPARROW,	Quantitative Fundus	Stage: In vivo (human subjects)
HEALTH	JANET	Autofluorescence in	Methods:
SCIENCES	RUTHE	Retinal Disorders	• Quantitative fundus autofluorescence (qAF) to measure lipofuscin levels
	1		

Prepared by Martin Dueñas - CONFIDENTIAL

<u> </u>			
			• Spectral-domain optical coherence tomography (SD-OCT) imaging (Aim 3)
			• Multimodal imaging techniques (Aim 4, unspecified)
			Drug Development: This research does not directly target drug development. However, it investigates qAF
			as a potential tool for:
			• Early detection of HCQ toxicity (Aim 1)
			• Diagnosis and monitoring of retinal diseases (all Aims)
			Key Points:
			• This study explores the use of qAF to assess lipofuscin levels and their connection to various retinal
			diseases.
			• The researchers aim to establish qAF as a tool for early detection of HCQ toxicity and
			diagnosis/monitoring of other retinal conditions.
			 By understanding how lipofuscin accumulation relates to different retinal diseases, this research
			may inform future therapeutic strategies.
			Research Question: Can gene therapy using AAV vectors rescue, restore, or delay vision loss in animal
			models of retinal degeneration (RD)?
			Stage: In vivo with animals (mice and rats)
			Methods:
			AAV vectors delivering various genes:
			• Gene replacement for specific mutations (e.g., rd10 model)
			 X-linked Inhibitor of Apoptosis (XIAP)
			 Ciliary Neurotrophic Factor (CNTF) or CNTFalpha
			 Evaluating the effects of gene therapy on retinal structure and function
			 Measuring the duration of therapeutic effect and optimal age window for treatment
			Drug Development: This research directly targets drug development for retinal dystrophy (RD) by:
			 Testing the efficacy and safety of AAV gene therapy in various RD models.
			 Identifying potentially effective genes for therapeutic intervention.
			Key Points:
			 The study investigates AAV gene therapy as a potential treatment for different types of RD.
			• Researchers deliver various genes using AAV vectors to see if they can improve retinal function and structure in animal models.
	HAUSWIRT	Retinal Gene Delivery	• The project focuses on gene replacement, cell survival factors (XIAP, CNTF), and exploring the
UNIVERSITY	H, WILLIAM	by Adeno-Associated	effective treatment window.
OF FLORIDA	W	Virus	• This research holds promise for developing AAV-based gene therapies for human RDs.
			Research Question: Is D3-vitamin A, a form of vitamin A enriched with deuterium, safe for people over 60
			years old?
			Stage: In vivo (human subjects)
			Methods:
		Phase 1 Safety and	• Open-label clinical trial (participants know they are receiving the investigational drug)
ALKEUS		Pharmacokinetics of	 One-month duration with one week of D3-vitamin A dosing (1.5 or 3 mg/day)
PHARMACEU	WASHINGT	ALK001 in people over	 Monitoring safety through standard blood and urine tests
TICALS, INC.	ON, ILYAS	60	 Measuring D3-vitamin A levels in blood plasma
TICALS, INC.		00	- measuring D5-mainin A levels in blood plasifia

			Drug Development: This research directly targets drug development for dry age-related macular
			degeneration (dry-AMD) and Stargardt's disease by:
			• Evaluating the safety of D3-vitamin A as a potential treatment.
			• This is a phase I clinical trial focusing on safety before moving to larger efficacy trials.
			Key Points:
			• This study investigates the safety of D3-vitamin A, a modified form of vitamin A, in older adults.
			• Researchers assess if D3-vitamin A can be taken up by the body and if it causes any side effects.
			• The ultimate goal is to see if D3-vitamin A can slow vision loss in dry-AMD and Stargardt's
			disease, but this study only focuses on safety.
			• If D3-vitamin A is safe, future studies will test its effectiveness for these diseases.
			Research Question:
			• What is the function of the ELOVL4 protein, and how do mutations in this gene cause Stargardt-like macular degeneration (STGD3)?
			• How does ELOVL4 function relate to retinal development and pathology?
			• Does ELOVL4 dysfunction contribute to abnormal accumulation of lipofuscin in the retinal pigment
			epithelium (RPE)?
			Stage: In vitro and in vivo with animals
			Methods:
			Biochemical analysis of ELOVL4 function (Aim 1)
			• Fatty acid composition analysis in cells and animal models (Aim 1 & 2)
			• Generation and analysis of ELOVL4 transgenic, knockin, and knockout mice (Aim 2 & 3)
			• Examining RPE function in ELOVL4 mutant mice (Aim 3)
			Drug Development: This research indirectly informs drug development for Stargardt-like macular
			degeneration and potentially age-related macular degeneration (AMD) by:
			 Increasing understanding of the underlying mechanisms of these diseases.
			• Identifying a new pathway potentially involved in macular degeneration (ELOVL4 and fatty acid biosynthesis).
			• Shedding light on lipofuscin formation, which may be a target for future therapies.
			Key Points:
			• This study investigates the role of ELOVL4, a protein involved in fatty acid metabolism, in
			Stargardt-like macular degeneration.
			• Researchers explore how ELOVL4 functions and how mutations in this gene lead to retinal degeneration in mice.
UNIVERSITY			• The findings may provide new targets for therapeutic intervention in Stargardt-like macular
OF			degeneration and potentially AMD.
CALIFORNIA,	ZHANG,	ELOVL4 and Retinal	• By understanding the role of ELOVL4, this research may open doors for developing new treatment
SAN DIEGO	KANG	Disease	strategies.

Connecting Ideas to Opportunities