OA Preclinical Landscape - DRAFT

	Contact PI		
Organization	/ Project Leader	Ducient Title	
Name	Leader	Project Title	OniX Summary Research question: Can a newly developed injectable ice-slurry method be used for cryoneurolysis to reduce post-operative pain following total knee arthroplasty (TKA) surgery, thereby reducing opioid dependence? Stage: Early development (Phase I) Methods:
		Injectable Ice Slurry	 Develop a commercial prototype device to create a sterile, injectable ice-slurry on-demand. Test the design for syringes to generate the ice-slurry and measure heat extraction.
BRIXTON BIOSCIENCES,	SIDOTI,	Cooling Technology for Treatment of	 Evaluate the feasibility of injection through a standard needle and in-vivo tissue cooling using a rat model.
INC.	CHARLES	Postoperative Pain	Drug development: Not applicable (non-pharmaceutical intervention)
			Research question: How does Jab1, a transcriptional cofactor, interact with BMP signaling during the process of chondrocyte differentiation (cartilage cell development)?
			Stage: Early investigation (uses in vitro and in vivo with animals)
			Methods:
			 Analyze the molecular mechanisms of Jab1-BMP interaction in chondrocytes (Aim 1).
			 Use genetic engineering to manipulate Jab1 expression in chondrocytes and assess its effect on BMP-driven cartilage formation in developing embryos (Aim 2).
CASE		Jab1-BMP signaling	 Identify Jab1 target genes through RNA sequencing and chromatin
WESTERN		interaction in	immunoprecipitation sequencing (Aim 3).
RESERVE	ZHOU,	<u>chondrocyte</u>	
UNIVERSITY	GUANG	differentiation	Drug development: Not applicable (focuses on understanding a biological process)

-			
UNIVERSITY OF PENNSYLVANI	SCANZELLO , CARLA ROSE	Modulation of Inflammation in Osteoarthritis via CD14- mediated pattern	 Research question: Does CD14, a molecule involved in inflammation, directly contribute to both the pain and pathology (bone remodeling and inflammation) observed in osteoarthritis (OA)? Stage: In vivo (using mice) and in vitro Methods: Use a mouse model of OA (DMM) to assess the impact of CD14 deficiency on inflammation and bone remodeling (Aim 1). Techniques include examining bone marrow chimeric mice to understand the role of myeloid cells. Investigate how CD14 affects the development of bone-remodeling cells and inflammatory mediators. Evaluate the effects of CD14 on nerve cell activation and pain response using TLR stimulation (Aim 2). Compare responses of normal and CD14-deficient cells in vitro. Analyze pain response in mice after joint injection with TLR stimulants.
A	RUSE	recognition	Drug development: Potential application (investigating a potential therapeutic target) Research question: Can a new microscopic imaging tool using piezo-thermal probes
			distinguish between healthy and diseased cells based on mechanical and thermal
			properties?
			Stage: Early development (Phase I SBIR)
			Methods:
			 Design and develop micromachined scanning piezo-thermal probes for use in liquids (aqueous environments).
			 Build an interface circuit and specialized software to operate the probes.
			 Demonstrate the system's ability to create thermal and topographical images of cells.
		Novel single cell disease	 Test if the system can differentiate between healthy and diseased cells based
		markers with a hybrid	on thermal and mechanical properties.
	GAITAS,	AFM scanning piezo-	Drug development: Not directly applicable, but the technology has the potential to be
KYTARO, INC.	ANGELO	thermal probe	used in drug discovery (exploring single cell disease markers).

		1	
CORNELL	REESINK,	Engineering recombinant Iubricin to combat	 Research question: Can lubricin, a protein with both adhesive and anti-adhesive properties, be used to prevent and treat biofilms on orthopedic implants? Stage: Early investigation (applying for funding to continue research after K08 award) Methods: Investigate how lubricin inhibits biofilm formation and disrupts existing biofilms (Aim 1) Test in different environments (growth media, synovial fluid, titanium alloy) Determine if specific sugar molecules (O-glycans) on lubricin are important for its anti-biofilm effects (Aim 2) Engineer lubricin molecules with different O-glycan structures Drug development: Potential application (investigating a new use for an existing molecule) Additional notes: This research could lead to new treatments for orthopedic implant infections. The applicant has expertise in veterinary orthopedics and is collaborating with
UNIVERSITY	HEIDI	orthopedic infection	specialists in glycoengineering and biofilm research.
			 Research question: Can preoperative magnetic resonance imaging (MRI) be used to predict which patients over 45 years old will benefit from arthroscopic partial meniscectomy (APM) surgery for knee pain and dysfunction? Stage: Data analysis (using existing data set) Methods: Analyze data from a large existing cohort of patients (over 1000) who underwent APM surgery. Patients were all over 45 years old and have preoperative MRI scans and
		MRI Predictors of	 patient-reported outcome measures (PROMs) at baseline and 1 year after surgery. Use statistical modeling to identify preoperative MRI features that are associated with improvement in pain and function after surgery. Develop tools to predict which patients are unlikely to benefit from APM
CLEVELAND		Outcome after	surgery based on these MRI features.
CLINIC LERNER	SUBHAS,	Arthroscopic Partial	Drug development: Not applicable
COM-CWRU	NAVEEN	Meniscectomy	Additional notes:
	INAVEEIN	ΙΝΕΠΙΣΕΕΕΕΟΠΙΥ	אטעונוטוומו ווטנכז.

3/20/24

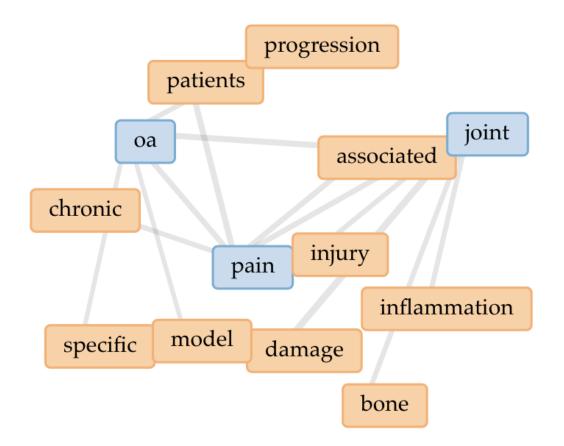
			This study could help improve decision-making about APM surgery for older
			patients with knee pain.
			The researchers plan to use the results of this study to design a future
			randomized controlled trial.
			Research question: How does mechanical stress contribute to pain in osteoarthritis (OA)?
			Stage: Early investigator career development
			Methods:
			 Dr. Miller will receive training in techniques to study nerve cells, calcium
			signaling, and the application of mechanical stress to tissues.
			 The research will use a mouse model of OA to investigate:
			•
			 Responses of nerve endings in the joint to mechanical stimulation (Aim 1).
			 How mechanical stress affects the production of pain-inducing
			molecules by cartilage cells (Aim 2).
			• The types of ion channels present in cartilage cells and their response
			to mechanical stress (Aim 3).
			Drug development: Not directly applicable, but the research could lead to improved
			treatments for OA pain.
			Additional notes:
RUSH			• This is a proposal for a career development award to support Dr. Miller's
UNIVERSITY	MILLER,	Biomechanical Pathways	research on OA pain.
MEDICAL	RACHEL	Associated with	• The research will be conducted at Rush University Medical Center, which has a
CENTER	ELIZABETH	Osteoarthritis Pain	strong research environment for studying arthritis.
			This is a proposal for a Rheumatic Disease Research Cores Center (ORDRCC) grant
			renewal.
			What the ORDRCC does:
			 Connects researchers who study rheumatic diseases (like arthritis and lupus).
			 Maintains a large biorepository with samples from patients with these
			diseases.
OKLAHOMA		Oklahoma Rheumatic	 Provides resources and training to junior investigators new to this field.
MEDICAL		Disease Research Cores	 Offers pilot project funding and helps researchers write grant applications.
RESEARCH	JAMES,	Center (Overall	Goals of the ORDRCC:
FOUNDATION	JUDITH A	Application)	Improve collaboration between researchers.
TOUNDATION			

			 Understand the causes and treatments of rheumatic diseases. Identify subgroups of patients who might respond better to specific treatments (precision medicine). Develop new investigators in this field. Key resources: Clinical Characterization and Biorepository Core (CCBC): manages the biorepository and associated data. Human Phenotyping Core (HPC): helps researchers perform advanced tests on patient samples. Administrative Core: oversees the entire ORDRCC and provides support services. Outcomes: Launched the careers of 27 new investigators. Provides infrastructure for clinical trials at a lower cost.
WASHINGTON UNIVERSITY	SANDELL, LINDA J	The Dynamic Range of Site-1 Protease Functions in Skeletal Development	 Research question: How does a protein called S1P influence the development and function of cartilage and bone? Stage: Early investigation (using genetically modified mice) Methods: Analyze the effects of S1P deficiency on lipid composition and function of the endoplasmic reticulum (ER) in cartilage cells (Aim 1). Investigate whether S1P is required to process a protein called Adamts3, which is important for cartilage development (Aim 2). Study the role of Adamts3 in cartilage development using mice with a cartilage-specific Adamts3 deficiency. Examine how S1P deficiency in cartilage and bone cells contributes to spinal abnormalities (hunchback and curvature of the spine) (Aim 3). Drug development: Not applicable (focuses on understanding a biological process) Additional notes: S1P is known to be involved in fat metabolism and the stress response in the ER. This research may provide insights into the causes of skeletal diseases like chondrodysplasia (abnormal cartilage development) and spinal deformities.

3/20/24

			Research question: Can a non-invasive technique using ultrasound to release the drug
			ketamine specifically in the brain's anterior cingulate cortex (ACC) be a safe and
			effective treatment for chronic pain?
			Stage: Early clinical development (first-in-human trial)
			Methods:
			 Preclinical (UG3 phase):
			 Scale up production of nanoparticles to meet human dosing standards
			and good manufacturing practices (GMP).
			 Conduct additional animal studies for regulatory approval of a clinical
			trial.
			Clinical trial (UH3 phase):
			 Evaluate the safety and efficacy of the technique in patients with
			chronic osteoarthritis pain.
			 Measure the amount of ketamine released based on the ultrasound
			dose.
			 Assess if the released ketamine reduces pain sensitivity and emotional
			response to pain.
			Drug development: This is an application to develop a new method for delivering an
			existing drug (ketamine).
			Additional notes:
			This approach aims to avoid the side effects of systemic ketamine
			administration by delivering it directly to the ACC, a part of the brain involved
		Clinical Translation of	in pain processing.
		Ultrasonic Ketamine	 Ultrasound is used to trigger the release of ketamine from tiny biocompatible
STANFORD	AIRAN,	Uncaging for Non-Opioid	carriers implanted in the brain.
UNIVERSITY	RAAG D	Therapy of Chronic Pain	·
UNIVERSIT	RAAG D	<u>Inerapy of Chronic Pain</u>	 If successful, this could be a new non-opioid treatment for chronic pain. Research question: How does the transcription factor C/EBPβ regulate the
			development and function of osteoclasts (cells that break down bone)?
			· · · · · · · · · · · · · · · · · · ·
			Stage: Early investigation (using genetically modified mice and cell cultures) Methods:
		Transcriptional	
UNIVERSITY		Transcriptional Regulation of Octobelact	 Analyze the effects of C/EBPβ deficiency on osteoclast development and function in mice (Aims 1.8, 2)
OF ALABAMA		Regulation of Osteoclast	function in mice (Aims 1 & 2).
AT		Lineage Commitment	 Use genetic techniques to manipulate C/EBPβ expression in cultured osteoclast
BIRMINGHAM	LI, YI-PING	and Differentiation	precursors (Aim 3).

OA Preclinical Landscape - DRAFT


			Drug development: Not directly applicable, but the research could lead to new treatments for bone diseases like osteoporosis and bone cancer.
			Additional notes:
			 C/EBPβ is a protein that binds to DNA and helps control gene expression. Understanding how C/EBPβ works in osteoclasts could help develop new drugs
			to target these cells.
			 Current osteoporosis drugs may have side effects, so there is a need for new treatments.
			Research question: Why are females more prone to non-contact ACL injuries than males?
			Stage: Data collection and analysis
			Methods:
			 Measure the forces and distribution of forces on the ACL during landing from a jump (Aim 1).
			 In vivo (living subjects): Use high-speed X-ray imaging to track knee
			movements.
			Ex vivo (dead bodies): Apply the measured movements to human knee
			specimens and measure ACL forces using a robotic testing system.
			 Investigate if an ACL injury prevention program reduces ACL forces in females (Aim 2).
UNIVERSITY			 Analyze the relationship between ACL forces, strains, and leg anatomy (Aim 3).
OF			• Use computer models to estimate stress and strain in the ACL (Aim 3).
PITTSBURGH		Non-Contact ACL Injuries	Additional notes:
AT	WOO,	in Females: an In-Vivo	This research could help explain why ACL injuries are more common in females
PITTSBURGH	SAVIO L-Y.	and Robotic Study	and inform the development of better prevention strategies.
			Research question: How can we improve the delivery of small interfering RNA (siRNA)
		Development of Anti-	drugs throughout the body (systemically)?
		Fouling Peptide-	Problem: Naked siRNA drugs degrade quickly and have trouble entering cells.
UNIVERSITY OF	OVERBY, CLYDE	Nanoparticle Conjugates	Nanoparticles (NPs) can protect siRNA, but they get stuck in the immune system and don't reach target tissues well
ROCHESTER	THOMAS	for the Delivery of siRNA to Fractures	don't reach target tissues well. Current solutions:
NUCHESTER			

			 PEGylation: Coating NPs with a molecule (PEG) to reduce protein sticking, but this can also make the NPs less effective. Proposed solution: Coating NPs with specially designed semi-randomized Zwitterionic Peptides (srZIPs). These peptides should reduce protein sticking while allowing the NPs to function effectively. Methods: Develop a library of different srZIPs and test which ones prevent NPs from clumping together in blood serum (Aim 1). See how well srZIP-coated NPs deliver siRNA into target cells and avoid uptake by immune system cells (Aim 2). Test if srZIP-coated NPs carrying siRNA that helps bone healing can accumulate in fractured bones in mice (Aim 3). Expected outcome: Identify effective srZIPs for coating NPs, which could lead to new ways to deliver siRNA drugs throughout the body for various diseases, including bone problems.
UNIVERSITY OF FLORIDA	SHARMA, BLANKA	Nanoparticle targeting within the joint for site- specific delivery of osteoarthritis therapeutics	 Research question: Can nanoparticles be designed to deliver drugs to specific locations within a joint to treat osteoarthritis (OA)? Stage: Early investigation (using animal models) Problem: OA damages cartilage and synovium (joint lining) but existing drugs don't stay in the right places long enough to be effective. Proposed solution: Develop nanoparticles that can deliver two different drugs: Chondroprotective drug (kartogenin) to protect cartilage (Aim 1). Immunomodulatory drug (CD200) to reduce inflammation in the synovium (Aim 2). Methods: Design nanoparticles that stick to and enter cartilage to release kartogenin (Aim 1). Design nanoparticles that target inflamed synovium and deliver CD200 (Aim 2). Test if delivering both drugs together is more effective than either one alone (Aim 3). Use laboratory models of OA to assess the effects of these nanoparticle therapies on joint health (cartilage structure, inflammation, pain, movement). Expected outcome: This research could lead to new treatments for OA that target multiple disease processes simultaneously and improve long-term joint health.

			Research question: Can a new drug delivery system be developed to provide long-
			lasting anti-inflammatory effects in joints after injury, potentially preventing post- traumatic osteoarthritis (PTOA)?
			Stage: Preclinical development (using animal models)
			Problem:
			 Existing anti-inflammatory drugs for PTOA need frequent injections because
			they are cleared from the joint too quickly.
			 Frequent injections increase the risk of side effects.
			Proposed solution: Develop a new drug delivery system that uses clusters of anti-
			inflammatory drugs. The size of the clusters can be controlled to determine how long
			the drug stays in the joint.
			Methods:
		Anti-inflammatory	• Develop and test drugs with different cluster sizes to see how long they stay in
		bioconjugates for	the joint (compared to existing drugs) (Aim 1).
		sustained inhibition of	Use a model of joint injury in animals to see if the longer-lasting drugs prevent
	JACKSON,	<u>post-traumatic</u>	PTOA from developing (Aim 1).
	WESLEY	osteoarthritis following	Expected outcome: This research could lead to a new treatment for PTOA that
VALITOR, INC.	MICHAEL	joint injury	requires fewer injections and has fewer side effects.
			Research question: How do body characteristics, gait mechanics, blood and urine
			proteins, muscle function, and inflammation contribute to osteoarthritis (OA)
			development?
			Stage: Early investigation (observational studies and animal models) Methods:
			Epidemiological studies (BLSA):
			 Following a group of people over time to see how body fat, muscle
			function, gait mechanics, and blood/urine protein levels are linked to
			OA risk.
			 Looking at relationships between hand OA and arterial stiffness.
			Clinical trials:
			 Studying muscle strength, mass, and function in people with and
			without knee OA.
NATIONAL		Delineating Early Events	 Investigating how weight loss through exercise programs affects
INSTITUTE ON	LING,	Osteoarthritis of the	inflammatory markers in knee OA.
AGING	SHARI M.	Knee	Animal models:

			 Studying muscle properties in response to OA and physical inactivity. Drug development: Not directly mentioned, but the research aims to better understand OA to inform future treatment strategies.
			Research question: How do mutations in smooth muscle cell (SMC) genes cause vascular diseases?
			Stage: Preclinical development using animal models
			Methods:
			• Lab studies (Projects 1 & 2) will use cells in vitro to investigate how mutations affect SMC protein function.
			• Project 3 will use mouse models with the mutations to study how SMC
			function changes with age and how blood vessels respond.Project 4 will use the same mouse models to study cellular processes leading
UNIVERSITY		Mutations in Smooth	to aneurysms and arterial blockages.
OF TEXAS HLTH SCI CTR	MILEWICZ,	Muscle Contractile Proteins: Pathways to	Drug development: Not directly mentioned, but the research could inform the
HOUSTON	DIANNA M	Vascular Diseases	development of new treatments for vascular diseases.
			Research question: Can tissue inhibitors of metalloproteinases (TIMPs) be engineered to selectively block enzymes that degrade cartilage, potentially treating arthritis? Stage: Preclinical development (using animal models and cells) Methods:
			 Study how TIMPs interact with enzymes that break down cartilage (aggrecanases and MMPs) (Aim 1 & 4).
			 Design and create TIMP variants that target specific enzymes (Aim 2 & 3). Test the effectiveness of these TIMP variants in lab models (cartilage explant
			system) (Aim 5).Test the effectiveness of TIMP variants in animal models of arthritis (Aim 6).
FLORIDA			• Identify the enzymes involved in human cartilage breakdown (Aim 7).
ATLANTIC	BREW,	TIMP Engineering and	Drug development: Yes, this research directly aims to develop new drugs (TIMP
UNIVERSITY	KEITH	Application to Arthritis	variants) to treat arthritis.

OA Preclinical Landscape - DRAFT

